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Abstract 
This research aims to determine how to measure the potential safety benefit of automated 
vehicle technologies and automated driving systems (ADS), and where current 
technology practices may not deliver on projected safety promises in order to answer a 
portion of the question “how safe is safe enough.” A missing piece that could allow for 
more cohesion and safer implementation of ADS is the knowledge of what type of data is 
needed for the refinement and further development of these systems, as well as which 
scenarios may not be able to be addressed by the currently implemented technology. The 
purpose of this project was to use naturalistic driving data to inform the scenario selection 
that is used to measure how ADS will perform in these scenarios. This project highlighted 
key areas where ADS may fail, such as in high-speed turns, blind turns and hills, lane-
change events with other vehicles, and scenarios in which there is significant visual 
obstruction and occlusion.  
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Introduction 
When looking to the future deployment of automated driving systems (ADS), a common question 
is how safe is safe enough? One potential answer is that as long as the system is safer than a human 
driver, then it is safe enough to deploy. This answer is much more complicated than it initially 
appears to be because it depends on understanding how to quantify human safety, which in turn 
relies on understanding human driver behavior. For example, the average human driver is not very 
safe. In 2022, it is projected that 42,795 deaths occurred on US roadways [1], which represents a 
small decrease (0.3%) compared to 2021. A survey collected by the National Highway Traffic 
Safety Administration in 2005–2007 found that the reason for the critical pre-crash event for 94% 
of crashes in the US can be assigned to the driver [2]. Although this statistic does not directly 
assign blame to the driver, it indicates that the critical reasons for crashes are primarily driver-
related, which can be further categorized into driver recognition error, decision error, performance 
error, non-performance error, and other (Figure 1). 

 

Figure 1. Chart. Critical driver-related reasons leading to 2,046,000 crashes estimated in 2005-2007 [2]. 

If humans are already not very safe, then how do we determine what is acceptably safe? Primarily, 
“acceptably safe” can be viewed from a variety of lenses. For example, current drivers view driving 
risk differently from the engineers who develop the vehicles, from insurance companies, and from 
regulatory agencies. ADS has the potential to reduce the risk of driving a vehicle by removing the 
driver from the equation. “Safe enough” means that everyone involved believes that the benefits 
of ADS deployment outweigh the risks. The research in this report looks at specific real-world 
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events when the actual driving risk results in a safety-critical event (SCE), and how ADS could 
have avoided or mitigated this event. By calculating safety surrogate measures, this research can 
be used to quantitatively show how the current driving risk relates to the potential risk of ADS in 
order to begin to answer the question of “how safe is safe enough?” 

The SCEs were extracted from naturalistic driving studies (NDS) and analyzed to determine how 
ADS could have affected the outcome of these crash and near-crash events, and how additional 
sensors and technology, like vehicle communication, could support the ADS during these events 
to ensure safe operation. Vehicle communication in this context refers to vehicle-to-vehicle (V2V) 
and vehicle-to-infrastructure (V2I) technology, which allows for the exchange of information 
between vehicles on the road, and between vehicles and the infrastructure. Combined, these can 
provide vehicles with real-time information about road conditions, traffic congestion, crashes, 
construction zones, and even other vehicles’ trajectories.  

Including V2V and V2I technologies in ADS is a possible solution to addressing many vehicle 
safety problems. However, a common problem in getting ADS on the road today is the ever-
changing trade-off between what features are necessary for the public sector and which are 
necessary for the private sector. The uncertainty of which technology will be available in the 
infrastructure becomes a problem when developing ADS because these vehicles must then develop 
a solution for every possible scenario.  

This research highlights scenarios that cannot be simply addressed by ADS alone, and how more 
vehicular communication could reduce or mitigate these specific SCEs in the hopes that this can 
inform decisions for determining what is required for V2I communication. 

The purpose of this research is to expand the understanding of ADS capability using exemplar 
cases from naturalistic driving data that demonstrate situations in which ADS may not provide 
the intended benefits. This may help safety researchers understand potential challenges to wide-
scale ADS deployment that simulation or closed-track testing cannot and thus address an 
important aspect of the question “how safe is safe enough?” 

Background 

Levels of Automation 
In order to discuss the potential safety impact of ADS, we first define what ADS is and how it fits 
into the levels of automation. ADS combine technological advances in a vehicle that can be 
classified within one of the six levels of driving automation defined by the Society of Automotive 
Engineers (SAE) in J3016 [3]. These levels of driving automation are used to clarify the capacity 
in which a vehicle is fully autonomous, and when a driver is still expected to be fully engaged in 
the driving task. Additionally, by having these levels of automation clearly stated, it makes it easier 
to determine what is expected of each vehicle, and thus makes it easier to grade the performance 
of the vehicle. From Figure 3, we can see that Levels 0–2 (L0, L1, and L2) expect the human driver 
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to continually monitor the road. In Levels 3–5 (L3, L4, and L5), the vehicle itself is in charge of 
monitoring the road. However, in cars with L3 and L4, the driver can be the fallback when 
automation fails or when the vehicle is outside of its operational design domain (ODD). It is 
important to make sure that the system correctly identifies when this occurs so that it can return 
functionality to the human driver at the correct moment, and that the human driver is prepared to 
do so. 

 

Figure 2. Illustration. SAE J3016 levels of driving automation [3]. 

ADS generally signifies cars with L3 and above, whereas advanced driver assistance systems 
(ADAS) are characterized as L1 and L2 automation. Currently, most cars available to the public 
are those with L2 capabilities and below. There are some vehicles now available with higher levels 
of autonomy, but they are still rare in 2023. In 2022, 46.5% of vehicle sales were cars with L2, 
and 3.9% of vehicle sales were vehicles marketed as L2+, which are essentially L2 vehicles with 
more advanced ADAS features that still require drivers to monitor the driving environment at all 
times [4]. Therefore, current crash databases do not have data on crashes involving ADS, and 
different methods are required to predict the potential safety benefit of ADS technology. This 
project aims to look at how the potential safety benefit of ADS can be predicted, and how to assess 
the accuracy of the predictions.  

How to Measure the Potential Impact of ADS 
The purpose of this research is to ensure that the potential safety benefit of ADS is realized. First, 
we must understand the current approaches to measure this theorized impact. This includes looking 
at the impact of ADAS features and how current technologies on the road have reduced crashes, 
or how safety testing of these features has been done in the past. This also includes understanding 
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the simulation and field testing that ADS developers and researchers use to assess how ADS might 
perform in certain safety-critical scenarios.  

Impact of ADAS (L1 and L2) 
Before we look at the impact of ADS on roadway safety, it makes sense to first look at the theorized 
and actual impact of ADAS technologies on the road, since ADAS essentially form the basis of 
ADS [5]. ADAS are primarily focused on collision avoidance technologies (like automated 
emergency braking [AEB], lane-keeping assist [LKA], and blind spot warning [BSW]), whereas 
ADS could be classified as a driver convenience feature since the purpose is to take on more of 
the driving task. Advances in ADAS have the potential to “reduce roadway crashes, fatalities, and 
injuries and assist the USDOT in managing safety risks along the path” to ADS [5]. It is anticipated 
that increasing the overall market penetration of these systems and improvements in their 
functionality and performance will contribute to overall improvements in traffic safety.  

Crash Statistics 
There are many studies that capture how ADAS may reduce the number of fatalities, injuries, and 
crashes in general. Research done by the AAA Foundation for Traffic Safety sought to quantify 
the number of crashes, injuries, and deaths that occurred in the US in 2016 that theoretically might 
have been avoided or reduced in severity had the involved vehicles been equipped with AEB, 
LKA, BSW, forward collision warning (FCW), and lane-departure warning (LDW). They found 
that, if installed on all vehicles, these ADAS would have had the potential to prevent or mitigate 
roughly 40% of all crashes involving passenger vehicles, 37% of all injuries, and 29% of all 
fatalities that occurred in those crashes [6]. A study at the University of North Carolina developed 
a model that estimated that ADAS technologies currently available to US consumers could prevent 
approximately 16% of crashes and injuries, and 22% of deaths between 2012 and 2050 [7]. The 
National Security Council used data on the predicted availability of ADAS features from the 
Highway Loss Data Institute and the crash population for crash avoidance technologies to estimate 
that ADAS technologies could have prevented about 62% of total traffic deaths between 2011 and 
2015 [8, 9]. 

In calculating these percentages, different inclusion and exclusion criteria were used to determine 
the populations of crashes that would have been or could be avoided with ADAS. Inclusion criteria, 
as seen in Table 1, include factors from the crash that indicate that an ADAS-equipped vehicle 
could have avoided or mitigated the crash.  
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Table 1. Examples of the target population of crashes for each ADAS feature. 

ADAS Feature Target Population 

AEB, FCW Crashes in which a vehicle or pedestrian is rear-ended by a 
forward-moving passenger vehicle. 

LDW, LKA Crashes in which the vehicle left its lane prior to the initial event, 
but intentionally did so. 

BSW Crashes in which a vehicle left its travel lane prior to the initial 
event and was not leaving the travel lane on purpose. 

These inclusion criteria do not take into account other factors that would indicate if an ADAS 
feature could have successfully mitigated or prevented a crash. For example, most ADAS features 
operate at specific speed ranges, and so the ADAS feature may not be active at very slow or very 
fast speeds [10]. BSW systems may not be able to warn drivers of vehicles travelling much faster 
in an adjacent lane [6]. Additionally, tight curves or steep inclines may affect how well the vehicle 
could brake in AEB situations [11]. The crash population percentages are a theoretical upper bound 
for the population of crashes that could have been affected by having ADAS available for all 
vehicles on the road. Therefore, there are many crashes within this population that would still most 
likely not be able to be addressed by ADAS, but more information about the specifics of the crash 
would need to be known. 

It is also important to look at the exclusion criteria, or the populations of crashes that were deemed 
to be not addressable by ADAS. This included crashes in which the police indicated that the driver 
was asleep, ill, or impaired by alcohol or drugs. Additionally, any events in which sensors would 
be blocked or dirty, or lane markings would be absent, degraded, or obscured by rain or snow 
would not be addressable by ADAS. Crashes like these have the potential to be addressable with 
ADS if there is additional vehicular communication between the infrastructure and the ADS (V2I). 
However, any crashes in which the road conditions are not ideal (snow/ice) or if there is any off-
roading involved would not be simply addressed with the inclusion of advanced technology. 

Field Testing 
The crash statistics are a top-down approach to estimate how many crashes could have been 
avoided with ADAS features. Field tests use a bottom-up approach by testing ADAS features and 
calculating which metrics can be used to assess the safety of each feature. For example, the 
National Highway Traffic Safety Administration (NHTSA) completed an objective test for 
automatic crash imminent braking (CIB) systems that defines minimum performance requirements 
and objective tests for CIB [12]. Results from tests like these are used to develop standards and 
requirements for ADAS features, such as the new requirement for AEB systems for light vehicles 
[13]. 
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The variables used in these tests are similar to the inclusion and exclusion criteria in the crash 
statistics. For example, the crash configuration, crash object, speed, acceleration, braking 
maneuver, range, impact location, and time-to-collision were all standardized for each test. 

Insurance Claims 
Another way to determine if ADAS has contributed to fewer or less severe crashes is by evaluating 
how insurance claims have changed since ADAS-equipped vehicles have been on the road. The 
Highway Loss Data Institute estimates that, overall, many collision avoidance technologies have 
reduced the frequency of claims: “front automatic emergency braking (AEB) and rear AEB, 
technologies that automatically take action for the driver in a crash-imminent situation, were 
associated with larger reductions in the frequency of claims than technologies that rely on the 
driver to respond to warnings” [14]. Another analysis of 11 million vehicles for model years 2014–
2019 showed a notable reduction in loss cost for bodily injury, property damage, and collision 
claims [15].  

Impact of ADS (L3–L5) 
When it comes to measuring the potential safety impact of ADS, there are no crash statistics or 
insurance claim changes available yet for ADS since they are not on the road. Therefore, only 
field testing or simulation studies can effectively measure the potential safety impact of ADS. 

Simulation 
Simulation studies have also been used to measure the safety impact of ADAS features, but for the 
purposes of this research, we are only focusing on simulation studies that have looked at measuring 
ADS safety. Similar to the initial design of this research, much ADS simulation testing revolves 
around scenario testing. Because testing every possible scenario that ADS may come across can 
be very time-consuming, one study was able to transform single highway scenarios into multiple 
different tests to evaluate the safety benefit of ADS [16]. Another study used deep learning to 
develop a range of factors and simulations to test scenarios that would inherently put ADS at risk 
[17]. They used safety surrogate measures to assess the safety impact of ADS within each of these 
scenarios. A combination of micro and macro traffic simulations can also be used to predict how 
ADS would affect the overall traffic landscape and safety outcomes of potential conflicts. A study 
using surrogate safety models and traffic microstimulators found that automated vehicles (AVs) 
could reduce the number of conflicts by 20% in signalized intersections and 29% in roundabouts 
[18]. 

These are all very similar to the research that this project proposes. However, for this project, we 
used real-world crash and near-crash events to simulate if ADS could have avoided or mitigated 
these SCEs. This ability to use naturalistic driving data allows for more insight into unique 
situations that are not available from simulating post-crash events that do not have the available 
pre-crash data. 
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Potential Problems 
There is also a question of how ADS may develop new problems. According to a study that used 
reaction times and accident statistics to predict vulnerable road user (VRU) interaction with ADS,  
AVs “might very well give rise to new types of crashes (in particular sensor failure, cyber risks or 
misinterpreted behavior)” [19]. Even if ADS are designed perfectly to interact with other vehicles 
and VRUs, there is still a share of accidents in which VRU action is a major contributing accident 
cause. 

Research Gap 
When it comes to determining “how safe is safe enough” for ADS deployment, the approaches to 
determine what is acceptably safe can become convoluted. One way to assess ADS safety can be 
generally organized into three categories: measurement, process, and thresholds [20-22]. 
Measurement establishes evidence to determine acceptable safety. Process includes activities 
associated with the verification and validation of safety measures. Thresholds establish the level 
of safety that an AV must achieve to be considered acceptably safe. This research focuses on using 
leading measurements (like safety surrogate measures) to highlight scenarios and processes that 
might not be addressable by ADS alone. 

From a review of current processes, there is a population of SCEs that are predicted to be mitigated 
or avoided by the introduction of ADS but might actually be unavoidable. “How safe is safe 
enough” cannot be answered accurately if there are some crashes and near-crashes that are 
embedded into some safety threshold that should in fact be addressed separately. This research 
uses current crash populations to determine which scenarios have not been addressed. Figure 3 is 
an illustration that shows an example percentage of the population of crashes that could be avoided 
by ADAS and ADS. The large rectangle represents the total population of crashes, and the color 
blocks show the relative percentage of SCEs that could be avoided with different automation 
levels. This research focuses on real-world events collected through NDS that may not necessarily 
be avoided by ADS alone; these events may highlight where the proposed safety benefit of ADS 
may not be realized.  
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Figure 3. Diagram. Example of the percentage of SCEs that could be avoided by ADAS and ADS. 

Methods 

Dataset 
NDS 
The data for this research came from a set of NDS: the Second Strategic Highway Research 
Program (SHRP 2) NDS, and the Canada NDS. NDS capture real-world driving conditions and 
real-time driver behavior and vehicle kinematics by the continuous recording of driving 
information using advanced instrumentation. The SHRP 2 database consists of over 5.5 million 
trips driven by 3,542 drivers across six collection sites in the continental United States [23]. The 
Canada NDS contained 149 participants and was conducted at one Canadian site that was 
comparable to the U.S. sites that were part of SHRP 2 [24]. Both NDS include vehicles with data 
acquisition systems that collect a variety of data under normal driving conditions. This includes 
time-series data such as speed, acceleration, yaw, and radar data such as range, range rate, and 
heading. Through data reduction, events are chosen that can be broken up into four case type levels: 
crash, near-crash, baseline, and epoch. This project looked at SCEs, which encompass crashes and 
near-crashes. Each event then has other coded features such as driver evasive maneuver, event 
nature, impact or proximity time, driver reaction time, locality, driver behavior, etc.  

Scenario Selection 
Events were first chosen based on the difficulty for them to be addressed by ADS. Based on the 
inclusion and exclusion criteria mentioned in the background section, they were broken into two 
categories:  

• Operator Factor: Fault of the other driver 
• Visual Obstruction: Present 
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From initial video review and reviewing the literature, it was determined that ADS might have 
trouble mitigating or reducing crashes and near-crashes in these two categories. Many crash and 
near-crash events can be predicted when the current driver is at fault because their following 
distance is too close, their speed is too high, or the driver does not notice another vehicle in its 
conflict path. However, other drivers on the road are much more difficult to predict. Drivers may 
drive erratically or unpredictably, which makes it much harder for ADS to perform the correct 
evasive maneuver. Additionally, any visual obstruction makes it much harder to accurately predict 
any conflict events in which there are surprise events, or the conflict cannot be identified by the 
sensors on the ADS vehicle.   

The selection of these scenarios led to 3,009 events. After some quality assurance, as described 
below, we were left with 1,780 events with reliable time-series data. However, the original 3,009 
events were still used to initially assess some driver behaviors and scenario classifications. 

Data Analysis 
Timepoints 
For each of the events, some initial timepoints were chosen to calculate different safety surrogate 
measures. These timepoints are shown in Table 2. 

Table 2. Important event timepoints and their definitions. 

Variable Definition 
T0 The timepoint that the conflict object was identified by the radar. 
T1 The conflict begin timepoint. This is the timepoint at which the 

sequence of events defining the crash or near-crash begins; for 
example, the lead vehicle brake lights activate, the vehicle enters 
the intersection, or the vehicle loses control. 

T2 The subject reaction start. This is the timepoint at which the 
driver initially reacts to the conflict. 

T3 Impact or proximity frame. This is the timepoint at which the 
vehicle first makes contact with the conflict object, or when they 
are at the closest proximity. 

Conflict Object 
The first necessary calculation was to determine which radar object corresponded to the conflict 
object. Although the datasets for each NDS were similar, the available time-series data varied 
depending on the dataset. Some datasets had validated data that included the actor type of each 
radar object. These were simple to extract, since any actor labeled as Actor Type 2 corresponded 
to the conflict object. However, older datasets did not have the actor type variable available. 
Therefore, the conflict object was determined to be the closest detected object at timepoint T3 (the 
impact or proximity frame). To validate this, a check was done to see if the conflict object was 
also the lead vehicle as long as the event included a conflict with the lead vehicle. If the check did 
not match, then the video was manually reviewed to determine if the correct radar object was 
identified.  
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After this quality assurance, 764 events were removed because there was no radar data available, 
91 events were removed because the subject vehicle was struck from behind, and another 365 
events were removed because the conflict object was not detected correctly by the radar. Therefore, 
we were left with 1,780 events. 

Safety Surrogate Measures 
Safety surrogate measures are mathematical measures used to predict the safety implications of 
new practices, which are important to use since crashes are rare events [25]. The safety surrogate 
measures chosen in this research were used to establish how to potentially measure the safety 
impact of ADS. These include the relative velocity, the time-to-collision (TTC), and the minimum 
required deceleration. These measures were used to compare how the human drivers performed in 
these events to how ADS could have performed.  

In order to do this, we must also determine at what timepoint the ADS would have begun to 
perform an evasive maneuver (or identified a potential collision). To simplify this calculation, the 
conflict begin timepoint (T1) is used as the moment in time in which the ADS would have 
identified a conflict and made a decision whether an evasive maneuver was necessary. This is a 
large simplification, and it would be beneficial to predict the trajectory of the subject vehicle and 
conflict object to determine a timepoint that better reflects current ADS development. However, 
since ADS development is so dependent on the manufacturer, this simplification is sufficient for 
this project.  

Relative Velocity 
The relative velocity is the difference in velocity between the subject vehicle and the host vehicle. 
If the vehicles are moving towards each other, then this value is negative. If the vehicles are 
separating, then this value is positive. The range rate from the radar was used, and was validated 
by using the range of the conflict object over a period of 1 second and the velocity of the host 
vehicle. The relative velocity at each timepoint was an average of these two values. 

TTC 
The TTC is the most common safety surrogate measure. It measures the time that the host vehicle 
would collide with the conflict object based on the current range and range rate [26]. This assumes 
that the host vehicle and the conflict object will continue on their current trajectories at the current 
velocities. This is commonly used to measure the potential severity of collisions even if there is 
not a collision (near-crash). It is simply the range divided by the range rate. 

Required Deceleration 
The minimum required deceleration is the smallest deceleration value required to avoid the 
collision if the subject vehicle and conflict object do not change trajectories or velocities. Although 
this value is already inherent in the TTC calculation, the minimum required deceleration can be 
more easily compared to deceleration rates already set in ADAS features (like AEB). The lower 
the value, the less braking that is required to avoid the crash. The required deceleration is calculated 
by taking the relative velocity divided by the TTC. 



11 
 

Video Review 
Throughout the scenario selection, data analysis, and validation, video review was constant. If any 
specific events stood out, notes were taken to highlight these events to review later. After the data 
analysis, any outliers were reviewed as well to determine what that could possibly forecast in terms 
of ADS involvement. This was more of a qualitative analysis, but as patterns emerged, it was easier 
to take note of cases that would be important for ADS testing and deployment. 

Results and Discussion 
The results are separated into a few categories based on how ADS might be the most effective. 
These categories include the driver reaction or evasive maneuver, as well as the event 
configuration. The event configuration significantly impacts how the safety surrogate measures 
were calculated, since the direction of the velocity was important for these calculations. 

Driver Reaction 
Since ADS has the potential to remove the driver from the driving equation, it was important to 
look at the driver’s reactions for the two scenario categories chosen. The diagram in Figure 4 is 
meant to represent the driver’s primary (and potential secondary) reaction. The overlap in the 
diagrams represents the combination of both reactions for a primary and secondary reaction. This 
diagram was included to show that the majority of drivers react by braking only, or by braking and 
steering. Generally, braking is easily addressed by ADAS features because only one direction of 
motion is required, whereas steering requires two directions of motion. Thus, if we were to 
compare human drivers to ADS, an evasive braking and steering maneuver requires more complex 
decision-making from the ADS.  

 

Figure 4. Diagram. The number of crashes and near-crashes broken up by the driver’s initial (and secondary) 
reactions. 
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No Reaction 
It is also important to note the 108 events in which the driver had no reaction. These events could 
be easily avoided or mitigated by introducing ADS because the driver did not perform any sort of 
evasive maneuver in these events. Within these scenarios, 102 of them (93.58%) were with 
vehicles in the adjacent lane in which the subject vehicle was cut-off. With additional blind-spot 
detection, ADS would easily be able to mitigate these cases. 

TTC 
The TTC was calculated for the moment when the subject reacted (began braking, steering, 
accelerating, did not react, or a combination thereof). Figure 5 shows the average TTC for seven 
event configurations, which  were broken up into angle, sideswipe, merge, cut-in; head on (initial 
opposite directions); forward impact; perpendicular; backing up; and roadside departure. The 
backing up and roadside departure categories were more of a catch-all for events that did not fit 
into the other four categories. The line in the center of each box represents the median TTC for 
that category, the box holds the 25th–75th percentiles, the whiskers represent the 10th and 90th 
percentiles, and the dots represent outliers. Each category is then split between the subject reaction 
TTC and the ADS TTC. 

 

Figure 5. Boxplot. Average difference in TTC (s) between when the subject reacted and when the ADS could 
have begun braking for seven event configurations. 
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We can see that the ADS provided a high TTC on average for all seven categories. On average, 
ADS provided 2.23 additional seconds of TTC across all seven categories. This is an expected 
result, since we expect that any automated technology will reduce any required reaction time from 
drivers. However, it is promising that ADS has the potential to provide almost 2 more seconds to 
make the correct decision. In high-speed scenarios, two seconds provide crucial time to begin 
braking and reduce the potential energy in a crash. 

Minimum Required Deceleration 
Although TTC provided an expected result, it is necessary to investigate what that additional time 
could provide to ADS. The minimum required deceleration to avoid a crash uses the current vehicle 
speed and the TTC to determine the braking force necessary to avoid a collision between the 
subject vehicle and the conflict object. Figure 6 shows the number of events for each binned 
minimum required deceleration value. According to a study by AAA that looked at maximum 
deceleration values in AEB scenarios, most AEB systems had an abrupt deceleration rate that was 
around 1 g [27]. The red dashed line in Figure 6 represents the 1-g threshold. Therefore, it could 
be stated that any events that require a minimum required deceleration above this threshold of 1 g 
would not be feasible by ADS. In this case, 206 (11.57%) of the events could not be avoided by 
braking alone, even with the added TTC from an ADS system. Since less than 1% of all the 
analyzed events actually resulted in a crash, it indicates that human drivers in these events are 
pretty good at performing the correct evasive maneuver. In fact, in the 206 events that are over the 
1-g threshold, the driver both braked and steered in 92.43% of them. Therefore, it is important to 
look into the combination of the braking and steering maneuvers for situations that ADS might not 
be able to address. These scenarios would most likely be impacted the most with the 
implementation of V2I communication. 
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Figure 6. Chart. Minimum required deceleration to avoid a crash if the subject vehicle was equipped with 
ADS. 

To look further into the steering maneuvers of the events, each dot in Figure 7 represents the 
corresponding yaw and acceleration for each event in which the driver braked and steered. A lower 
deceleration rate and lower yaw would correspond to a less severe evasive maneuver. The purple 
dots represent the events that had a minimum required deceleration value of greater than 1 g if the 
vehicle was equipped with ADS. We can see that the drivers of these events also had higher yaw 
and deceleration rates.  

A traction circle is generally used in physics to depict how fast vehicles can take turns without 
losing traction. The circle in Figure 7 represents the concept of using a traction circle to see how 
these events could potentially be evaluated in future analyses. The application of the traction circle 
could be used to show how vehicle dynamics may influence how effective ADS evasive maneuvers 
are compared to human drivers (i.e., any events outside of the traction circle would lose traction 
on the road). The actual application of this concept was considered out of scope for this project, 
and so Figure 7 would need to include more in-depth analysis into the correct parameters chosen. 
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Figure 7. Chart. Yaw (deg/s) and acceleration (m/s^2) for each event with a generalized traction circle. The 
purple dots represent the events that required a minimum deceleration greater than 1 g for ADS. 

Scenario Review 
By using the data above, specific scenarios were able to be easily selected to review independently. 
This is a more anecdotal but important part of the project, as it highlighted key areas in which ADS 
may not be able to perform as expected. These key areas included high-speed turns, blind turns 
and hills, lane-change events with other vehicles, and scenarios in which there is significant visual 
obstruction and occlusion. The most common visual-obstruction cases were those in which the 
vehicle was making a left turn across stopped traffic and another vehicle came unexpectedly down 
the outside lane. Although these are very specific examples, they may indicate additional testing 
that would be required before full ADS deployment. 

Conclusions and Recommendations 
The answer to “how safe is safe enough” is complicated and ever-changing. The purpose of this 
research was to expand our understanding of the actual capabilities of ADS when applied to real-
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world data. Using a small set of naturalistic data has the potential to convey important information 
to wide-scale ADS deployment that simulation or closed-track testing cannot.  

This project looked specifically at events in which ADS may have the potential to not perform 
well. These scenarios included those in which the “other” driver was at fault, and when there was 
a visual obstruction leading to the cause of the SCE. Safety surrogate measures such as the relative 
velocity, TTC, and required deceleration were calculated to compare baseline SCEs to these same 
events as if the vehicle was equipped with ADS. It was found that although ADS could provide 
more reaction time before an imminent collision, drivers are generally good at performing evasive 
maneuvers that require braking and steering, which requires a complex set of decisions for ADS. 
Although this may be counterintuitive to the original point that “safer than a human driver” might 
not be safe enough, it is important to note that human drivers can perform better than ADS in 
certain scenarios. 

A large portion of this project was spent reviewing video and looking at videos that specifically 
were pointed out as potentially being important for ADS deployment from the safety surrogate 
measures. It was found that key areas in which ADS may not perform as expected include high-
speed turns, blind turns and hills, lane-change events with other vehicles, and scenarios in which 
there is significant visual obstruction and occlusion. One goal of this project is to provide more 
testing scenarios for developing ADS in order to improve the algorithms and systems within the 
vehicle, which are highlighted by these key events. These events can also be used to show the 
importance of V2V or V2I implementation when even the most advanced ADS technology cannot 
prevent a SCE. This has the possibility of reducing crashes for future ADS, or preventing 
secondary events caused by the incorrect action of ADS. 

The results from this project supplement techniques that have previously been used to determine 
the safety impact of ADAS technology. This research uses more physics-based methods to 
determine how an ADS could react in different scenarios and point to real events to determine 
scenario selection. This can inform future tests that determine the safety impact of ADS to 
support “how safe is safe enough” arguments. 

It would be beneficial to look specifically into how ADS developers use sensor data to predict 
potential conflicts, as well as to look into more of the physics-based methods of how ADS plan 
any evasive maneuvers. Additionally, this project would greatly benefit from looking at how 
additional vehicular communication could enhance ADS safety with V2V or V2I technology. 

Although this research plays a role in answering “how safe is safe enough,” the answer to this 
question requires a lot more collaboration between all perspectives of what acceptably safe means. 
It requires partnership between manufacturers, engineers, researchers, drivers, policy makers, and 
everyone in-between to determine how safe is safe enough. 

Additional Products 



17 
 

Safe-D Project Website: 

https://safed.vtti.vt.edu/projects/measuring-the-safety-of-ads-how-safe-is-safe-enough/  

In order to comply with participant informed consent and IRB requirements, use of this data set is 
governed by a data use license (DUL). Please send data use license inquiries to 
datasharing@vtti.vt.edu. 

Education and Workforce Development Products 
Course Module 

Course Module developed for graduate-level course on advanced transportation systems: 
BMES 5234 – Advanced Vehicle Safety Systems 

This course teaches the emerging challenges, applications, technology, and tools used in 
advanced vehicles to graduate students at Virginia Tech. This research showed how to 
use available data to measure the potential safety impact of advanced driving assistant 
systems and automated driving systems. It highlights some key areas that may be 
neglected when this technology is being developed and allows the students to find gaps to 
apply their own research and develop technology that could address these issues. 

Women in Transportation Webinar Outreach 

This webinar is a panel of women in transportation around the Commonwealth of 
Virginia that talk to high school girls interested in STEM fields. 

Radford High School Career Fair; Radford High School, Radford, VA; April 20, 2023 

This career fair had about 150 high school sophomores that rotated through different 
booths to get exposure to diverse career paths. Various VTTI personnel discussed 
different research projects they had been a part of and showed some technology on an 
instrumented research vehicle. 

C-Tech2: Computers and Technology Summer Camp at Virginia Tech; VTTI: Blacksburg, 
VA; June 26, 2023 

A 15-minute presentation about this project to 16 high-school women during a larger tour 
of VTTI. Led to a great discussion about the future deployment of ADS and questions 
that the general public may have. 

Radford University: Young Women in STEM Summer Camp; Radford University, 
Radford, VA; July 18, 2023 

A 30-minute presentation about this project to about 30 high-school women during a 
session at their STEM summer camp. Again, this led to a great discussion about their 

https://safed.vtti.vt.edu/projects/measuring-the-safety-of-ads-how-safe-is-safe-enough/
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interaction with ADAS features and how ADS  may affect how they interact with 
vehicles in the future. 

Technology Transfer Products 
Chapter of Dissertation 

Herbers, E. (2023). Using Naturalistic Driving Data to Measure the Safety Impact of 
Automated Driving Systems [Doctoral Dissertation, Virginia Tech]. 

Conference Presentation 

Herbers, E. (2023, September 13-14). Using Naturalistic Driving Data to Measure the 
Safety Impact of Automated Driving Systems. Distracted Driving Summit, Blacksburg, 
VA, United States. 

(Potential) Herbers, E. (2024, April 7-9). Using Naturalistic Driving Data to Measure the 
Safety Impact of Automated Driving Systems. Lifesavers Conference on Roadway 
Safety, Denver, CO, United States. 

Webinar Presentation 

Herbers, E. (2024) Measuring the Safety of ADS: How Safe is Safe Enough? Safe-D 
UTC Webinar. 
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